Uber's Michelangelo vs. Netflix's Metaflow

  Uber's Michelangelo vs. Netflix's Metaflow Michelangelo Pain point Without michelangelo, each team at uber that uses ML (that’s all of them - every interaction with the ride or eats app involves ML) would need to build their own data pipelines, feature stores, training clusters, model storage, etc.  It would take each team copious amounts of time to maintain and improve their systems, and common patterns/best practices would be hard to learn.  In addition, the highest priority use cases (business critical, e.g. rider/driver matching) would themselves need to ensure they have enough compute/storage/engineering resources to operate (outages, scale peaks, etc.), which would results in organizational complexity and constant prioritization battles between managers/directors/etc. Solution Michelangelo provides a single platform that makes the most common and most business critical ML use cases simple and intuitive for builders to use, while still allowing self-serve extensibi...
Above is an activity's lifecycle.


Twitter auth only works if the time on the phone being used is correct.  Sometimes the emulator is way off and then I'll get an error when trying to get authorized.

Twitter resources:
http://blog.enbake.com/developing-an-android-twitter-client-using-twitter4j/
http://twitter4j.org/en/code-examples.html
https://github.com/itog/Twitter4j-android-Sample/

Comments

Popular posts from this blog

ChatGPT - How Long Till They Realize I’m a Robot?

Architectural Characteristics - Transcending Requirements

Laws of Software Architecture